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Code rewrite vs. code reuse

2

New project → new code 
Inheriting past code is often problematic 

Documentation 

Implementation 

Debugging
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Code rewrite vs. code reuse

3

Domain specific language (DSL) 
Ab-initio: Siesta, VASP, QuantumEspresso, Gaussian, etc… 

Equivalent for tight-binding problems?

kwant (Python) pybinding (Python)

NEMO5 (custom) EQuUs (Matlab) MathQ (Mathematica)…

Q

QBox (Julia)
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The Mathematica language

4

Some advantages of Mathematica 
Vast technology stack 

Everything is built-in 

Unique documentation/example system 

Very optimised high-level numerical algorithms 

Strong symbolic side 

High-quality visualisations 

Very nice notebook environment
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The Mathematica language

5

Some disadvantages of Mathematica 
Proprietary 

Expensive licenses (unless you are a student) 

Expensive parallelisation in clusters (licenses!) 

Non-trivial interoperability with other languages 

Substantial memory overhead for numerics 

Syntax can be made very obscure (too compact)
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MathQ, a Mathematica package

6
http://www.icmm.csic.es/sanjose/MathQ/MathQ.html
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MathQ structure
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Physical modelGeometry

MQLattice MQScatteringSystem

MQSystem

Solvers

Visualization

Observables

MQGradientMesh

Hopping 
Onsite 

Elasticity 
Deformations 

Disorder 
…
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Transport
Kernel 

polynomial 
method

Kubo 
formula

Interpolated 
sampling

Landauer

BTK

Scattering Matrix

Eigenmodes

RGF

Supercurrents

Bu
ild

ers

BuildLattice

BuildSystem

BuildScatteringSystem

BuildMesh

ModifySystem

Electronic structure

Kernel 
polynomial 

method Exact 
diagonalization

Lanczos

Interpolated 
sampling

Spectral densities

Topology

Elasticity

Molecular dynamics

Elastic relaxationContinuum 
elasticity

Finite elements

Elastic 
constants

Visualization

PlotLattice

PlotScatteringStates

PlotField

PlotBands

PlotEigenstates

MathQ structure (v0.5)
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Me
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Generic interactions

Adaptive convergence

Superconductivity

Kernel polynomial method

Interpolated 
sampling



Demo time!
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Su–Schrieffer–Heeger model 
Bulk-boundary correspondence

10
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Polyacetylene
1D carbon chain with alternating bonds

11

Unit cell

A
B t1 t2
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SSH model
1D carbon chain with alternating bonds

12

HSSH =

0
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SSH bandstructure
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The two sublattices define a pseudospin
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SSH bandstructure
The two sublattices define a pseudospin
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SSH bandstructure
The two sublattices define a pseudospin
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SSH bandstructure
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Topological transition at |t1| = |t2| (gap inversion)
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Topological insulator

17

Topological transition at |t1| = |t2| (gap inversion)

Edge states

Bulk-boundary
correspondence

Topological gap
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Kitaev model 
Majorana zero modes

18
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The Kitaev model

19

SSH - Kitaev mapping 
A/B = particle/hole

Bogoliubov - de Gennes - Nambu formulation
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Haldane model 
Berry curvature

20
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The Haldane model
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Model for a Quantum Hall Eff'ect without Landau Levels:
Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane
Department ofPhysics, University of California, San Diego, La Jolla, California 92093

(Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance a" in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity
anomaly" of (2+1)-dimensional field theories.

PACS numbers: 05.30.Fk, 11.30.Rd

The quantum Hall effect' (QHE) in two-dimensional
(2D) electron systems is usually associated with the pres-
ence of a uniform externally generated magnetic field,
which splits the spectrum of electron energy levels into
Landau levels. In this Letter I show how, in principle, a
QHE may also result from breaking of time-reversal
symmetry (i.e., magnetic ordering) without any net mag-
netic fiux through the unit cell of a periodic 2D system.
In this case, the electron states retain their usual Bloch
state character.
The model presented here is also interesting in that if

its parameters are on a critical line at which its ground
state changes from the normal semiconductor state to
this new type of QHE state, its low-energy states simu-
late a "(2+1)-dimensional" relativistic quantum field
theory exhibiting the so-called "parity anomaly" and a
(2+1)-D analog of "chiral" fermions without the
opposite-chirality anomaly-canceling partners that usu-
ally accompany them in lattice realizations of field
theories ("fermion doubling" ).
In the zero-temperature limit, the transverse conduc-

tivity o "3' of a periodic 2D electron system with a gap in
the single-particle density of states at the Fermi level
takes quantized values ve /h, where v is generally ra-
tional, but can only take i nteger values in the absence of
electron interactions. This property of a pure system is
stable against sufficiently weak disorder effects. Since
a" is odd under time reversal, a nonzero value can only
occur if time-reversal invariance is broken.
In the usual QHE, the gap at the Fermi level results

from the splitting of the spectrum into Landau levels by
an external magnetic field. The scenario considered here
is different, and involves a 2D semimetal where there is a
degeneracy at isolated points in the Brillouin zone be-
tween the top of the valence band and the bottom of the
conduction band, that is associated with the presence of
both inversion symmetry and time-reversal invariance.
If inversion symmetry is broken, a gap opens and the sys-
tem becomes a normal semiconductor (v=0), but if the
gap opens because time-reversal invariance is broken the
system becomes a v=+ 1 integer QHE state. If both
perturbations are present, their relative strengths deter-

,bg qb, ~,

FIG. 1. The honeycomb-net model ("2D graphite") showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the A
and 8 sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symmetry
(marked "+")and is then bounded by the hexagon of nearest-
neighbor bonds. Arrows on second-neighbor bonds mark the
directions of positive phase hopping in the state with broken
time-reversal invariance.

mine which type of state is realized.
To model a 2D semimetal, I use the "2D graphite"

model investigated previously by Semenoff as a possible
lattice realization of a (2+I)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.
Semenoff investigated the tight-binding model with

one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for MAO.
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time-reversal invariance.

mine which type of state is realized.
To model a 2D semimetal, I use the "2D graphite"

model investigated previously by Semenoff as a possible
lattice realization of a (2+I)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.
Semenoff investigated the tight-binding model with

one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for MAO.
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while for Bp&0, relativistic Landau levels are obtained
as follows:

e,„~= ~ [(rn,c ) +nb ~ eBp ~
c ] ' (n ~ I ),

e p =am, c sgn(eBp) .

(4a)

(4b)

Every n ~ 1 level that evolves out of the upper band as
Bp is turned on is balanced by a level that evolves from
the lower band. However, the n =0 "zero-mode" energy
is not symmetric under Bp —Bp. It evolves from the
upper band if am, eBp is positive, and from the lower
band if it is negative.
In the time-reversal symmetric case t2sin&=0, the two

masses m+ and m — are equal, and the sum of the
Landau-level spectra derived from the two distinct zone
corners is particle-hole symmetric, and invariant under
Bp Bp. In this case, a" 0 by time-reversal invari-
ance. As the Hainiltonian is changed, tr"i' remains in-
variant, provided the Fermi level remains in a gap.
When Bp 0, models where the Fermi level is in the gap
and rn ~ and m —have the same sign can evolve continu-
ously from the time-reversal invariant case, and hence
have 0'~ 0.
To calculate tr"r for models where rn~ and trt have

opposite signs, I continuously turn on the external field,
then vary m+ and m until they become equal, at the
same time varying the Fermi level so at all times it lies in
a gap. Comparison of the occupation numbers of the
Landau levels obtained this way with those obtained by
continuously applying the field to the time-reversal in-
variant system shows that they differ by the complete
filling of one Landau level. Thus at T=O and with a
fixed chemical potential, the application of a weak exter-
nal magnetic field to a system where m~ and m have
opposite signs induces an extra fteld dependent g-round-
state charge density Atr ~ e Bp/h relative to the field-
independent charge density when these parameters have

f2

FIG. 2. Phase diagram of the spinless electron model with
~ tzlt~ ~

& —,'. Zero-field quantum Hall effect phases (v=+' l,
where o' =ve /h) occur if (Mlt2( &343(sing~. This figure
assumes that i2 is positive; if it is negative, v changes sign. At
the phase boundaries separating the anomalous and normal
(v=0) semiconductor phases, the low-energy excitations of the
model simulate undoubled massless chiral relativistic fermions.

the same sign. This allows 0." in the limit Bp=0 to be
evaluated as ve /h, where v= 2 [sgn(m —)—sgn(m+)l=+ 1 or 0. The phase diagram of v for the spinless
electron model as a function of M/t2 and p is shown in
Fig. 2.
I note that when the model has neither an inversion

center nor time-reversal invariance (i.e., when both M
and t2sinp are nonzero), so ~m~ ~

e ~m —~, the spec-
trum is no longer invariant under k —k, and the
fermion-doubling principle is defeated. In particular,
along the critical lines in the phase diagram where one of
rrt+ or rrt vanishes, the model has a low-lying massless
spectrum simulating nondegener ate relativistic chiral
fermions.
When m, 0, the fermion field theory derived from

the expansion (2) about the Fermi point with vanishing
gap has a charge-conjugation symmetry (particle-hole
symmetry) which is not present in the lattice model with
t2&0 from which it is derived. In the continuum field
theory, there is no lower bound to the Dirac sea of filled
electron states, and the establishment of absolute as op-
posed to relative values of cr"~ is ambiguous. Jackiw in-
vokes the charge-conjugation symmetry of (2) with
m =0 to assign the value o" =0 in the case of a
particle-hole symmetric Fermi level, where the "zero-
mode" Landau level (4b) is half filled. This would imply
a quantum Hall effect with v= 2 a if the zero mode is
filled, and v =——,

' a if it is empty. This suggests
"charge fractionalization, " and violates the principle
that a noninteracting electron system can only exhibit an
integral QHE. The model studied here shows how the
high-energy cutoff structure of a model with undoubled
fermions described by the relativistic Hamiltonian (2) at
low energies must break the charge-conjugation symme-
try, and give an extra contribution of +' —,

' to v, restor-
ing an integral QHE. Thus even if the low-energy spec-
trum consists of undoubled chiral fermions, their
partners must be present at high energies to restore a
properly integral QHE.
When electron spin is included without any other

change, there is an equal contribution from both spin
components, and 0 "r is doubled. However, a periodic lo-
cal magnetic field with the full symmetry of the lattice
will also couple to electrons with a Zeeman term 0'
=y&S', where S' is the azimuthal electron spin. This
term will relatively displace the up-spin and down-spin
bands by an energy ) hp, and if this exceeds the gap at
the Fermi level, the system will become a partially spin-
polarized metal. If —,

'
~ y ~

ii exceeds 3J3
~ t2 ~, the QHE

phases are completely eliminated, but if it is smaller,
they survive for small enough M and t2sinp. (The direct
transition from the normal to the anomalous semicon-
ductor phase as M is varied is then replaced by an inter-
mediate spin-polarized metallic phase. ) For the realiza-
tion of the internal field proposed earlier, yh (in units of
the rydberg) is given by C'g/a, where C' is another
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We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of
graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin
orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall
insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and
charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but
they are insensitive to disorder because their directionality is correlated with spin. The spin and charge
conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba
coupling, disorder, and symmetry breaking fields are discussed.
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The generation of spin current solid state systems has
been a focus of intense recent interest. It has been argued
that in doped semiconductors the spin orbit (SO) interac-
tion leads to a spin Hall effect [1,2], in which a spin current
flows perpendicular to an applied electric field. The spin
Hall effect has been observed in GaAs [3,4]. Murakami
et al. [5] have identified a class of cubic materials that are
insulators, but nonetheless exhibit a finite spin Hall con-
ductivity. Such a ‘‘spin Hall insulator’’ would be of intrin-
sic interest, since it would allow for spin currents to be
generated without dissipation.

In this Letter we show that at sufficiently low energy a
single plane of graphene exhibits a quantum spin Hall
(QSH) effect with an energy gap that is generated by the
SO interaction. Our motivation is twofold. First,
Novoselov et al. [6] have recently reported progress in
the preparation of single layer graphene films. These films
exhibit the expected ambipolar behavior when gated and
have mobilities up to 104cm2=V s. Thus, the detailed ex-
perimental study of graphene now appears feasible. We
believe the QSH effect in graphene is observable below a
low but experimentally accessible temperature. Secondly,
we will show the QSH effect in graphene is different from
the spin Hall effects studied for three-dimensional cubic
systems in Ref. [5] because it leads to a phase which is
topologically distinct from a band insulator. The QSH
effect in graphene resembles the charge quantum Hall
effect, and we will show that spin and charge currents
can be transported in gapless edge states. As a model
system, graphene thus identifies a new class of spin Hall
insulator. It may provide a starting point for the search for
other spin Hall insulators in two-dimensional or in layered
materials with stronger SO interaction.

SO effects in graphite have been known for over 40
years [7], and play a role in the formation of minority
hole pockets in the graphite Fermi surface [8]. However,
these effects have largely been ignored because they are
predicted to be quite small and they are overwhelmed by
the larger effect of coupling between the graphene planes.

Unlike graphite which has a finite Fermi surface, however,
graphene is in a critical electronic state which can be
strongly affected by small perturbations at low energy.

Graphene consists of a honeycomb lattice of carbon
atoms with two sublattices. The states near the Fermi
energy are ! orbitals residing near the K and K0 points at
opposite corners of the hexagonal Brillouin zone. An ef-
fective mass model can be developed [9] by writing the low
energy electronic wavefunctions as

!"r# $ %"uAK; uBK#; "uAK0 ; uBK0#& "r# (1)

where u"A;B#"K;K0#"r# describe basis states at momentum k $
K, K0 centered on atoms of the A, B sublattice.  "r# is a
four component slowly varying envelope function. The
effective mass Hamiltonian then takes the form,

H 0 $ !i@vF y""x#z@x ' "y@y# : (2)

Here ~" and ~# are Pauli matrices with "z $ (1 describing
states on the A"B# sublattice and #z $ (1 describing states
at the K"K0# points. This Hamiltonian describes gapless
states with E"q# $ (vFjqj. Without spin, the degeneracy
at q $ 0 is protected by symmetry. The only possible terms
that could be added to open a gap are proportional to "z or
"z#z. The "z term, which corresponds to a staggered
sublattice potential is odd under parity (which interchanges
the A and B sublattices). The "z#z term is even under
parity, but odd under time reversal (which interchanges K
and K0).

The SO interaction allows for a new term, which will be
the focus of this Letter:

H SO $ "so y"z#zsz : (3)

Here sz is a Pauli matrix representing the electron’s spin.
This term respects all of the symmetries of graphene, and
will be present. Below we will explicitly construct this
term from the microscopic SO interaction and estimate
its magnitude. If the mirror symmetry about the plane is
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of K and K0 are both at k ! 0. It is interesting to note that
for zigzag edges the edge states persist for !so ! 0, where
they become perfectly flat [16]. This leads to an enhanced
density of states at the Fermi energy associated with zigzag
edges. This has been recently seen in scanning tunneling
spectroscopy of graphite surfaces [17].

We have also considered a nearest neighbor Rashba
term, of the form iẑ " #s!" $ d%cyi!cj". This violates the
conservation of sz, so that the Laughlin argument no longer
applies. Nonetheless, we find that the gapless edge states
remain, provided #R <!so, so that the bulk band gap
remains intact. The crossing of the edge states at the
Brillouin zone boundary kx ! $=a in Fig. 1 (or at k ! 0
for the armchair edge) is protected by time reversal sym-
metry. The two states at kx ! $=a form a Kramers doublet
whose degeneracy cannot be lifted by any time reversal
symmetric perturbation. Moreover, the degenerate states at
kx ! $=a& q are a Kramers doublet. This means that
elastic backscattering from a random potential is forbid-
den. More generally, scattering from a region of disorder
can be characterized by a 2$ 2 unitary S matrix which
relates the incoming and outgoing states: "out ! S"in,
where " is a two component spinor consisting of the left
and right moving edge states %L",%R#. Under time reversal
"in;out ! sy"'out;in. Time reversal symmetry therefore im-
poses the constraint S ! sySTsy, which rules out any off
diagonal elements.

Electron interactions can lead to backscattering. For
instance, the term u yL"@x 

y
L" R#@x R#, does not violate

time reversal, and will be present in an interacting
Hamiltonian. For weak interactions this term is irrelevant
under the renormalization group, since its scaling dimen-
sion is ! ! 4. It thus will not lead to an energy gap or to
localization. Nonetheless, it allows inelastic backscatter-
ing. To leading order in u it gives a finite conductivity of
the edge states, which diverges at low temperature as
u(2T3(2! [18]. Since elastic backscattering is prevented
by time reversal there are no relevant backscattering pro-
cesses for weak interactions. This stability against inter-

actions and disorder distinguishes the spin filtered edge
states from ordinary one-dimensional wires, which are
localized by weak disorder.

A parallel magnetic field Hk breaks time reversal and
leads to an avoided crossing of the edge states. Hk also
reduces the symmetry, allowing terms in the Hamiltonian
which provide a continuously gapped path connecting the
states generated by &z'zsz and &z. Thus in addition to
gapping the edge states Hk eliminates the topological
distinction between the QSH phase and a simple insulator.

The spin filtered edge states have important consequen-
ces for both the transport of charge and spin. In the limit of
low temperature we may ignore the inelastic backscatter-
ing processes, and describe the ballistic transport in the
edge states within a Landauer-Büttiker [19] framework.
For a two terminal geometry [Fig. 2(a)], we predict a
ballistic two terminal charge conductance G ! 2e2=h.
For the spin filtered edge states the edge current density
is related to the spin density, since both depend on nR" (
nL#. Thus the charge current is accompanied by spin accu-
mulation at the edges. The interplay between charge and
spin can be probed in a multiterminal device. Define the
multiterminal spin conductance by Isi !

P
jGs

ijVj. Time
reversal symmetry requires Gs

ji ! (Gs
ij, and from

Fig. 2(b) it is clear thatGs
ij ! &e=4$ for adjacent contacts

i and j. In the four terminal geometry of Fig. 2(b) a spin
current Is ! eV=4$ flows into the right contact. This
geometry can also be used to measure a spin current. A
spin current incident from the left (injected, for instance,

V/2

V

-V/2

0

0 0

(b)

(a)

I

Is

FIG. 2. Schematic diagrams showing (a) two terminal and
(b) four terminal measurement geometries. In (a) a charge
current I ! #2e2=h% V flows into the right lead. In (b) a spin
current Is ! #e=4$% V flows into the right lead. The diagrams to
the right indicate the population of the edge states.
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FIG. 1. (a) One-dimensional energy bands for a strip of gra-
phene (shown in inset) modeled by (7) with t2=t ! 0:03. The
bands crossing the gap are spin filtered edge states.
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